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Local formulation of the first law and the second law of thermodynamics
for a nonequilibrium system
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In this paper we construct a local formulation of the first law and the second law of thermodynamics for a
nonequilibrium system such that their global forms are equivalent to Kelvin’s principle and Clausius’s prin-
ciple. We also study the relationship between the entropy balance equation and the calotropy balance equation
obtained by EdiPhys. Rev. B51, 768(1995] by examining the model equations of the nonconserved variables
proposed by Jou, Casse-Vazquez, and Lgliep. Prog. Physs1, 1105(1988; Extended Irreversibie Ther-
modynamicgSpringer, Heidelberg, 199Bin extended irreversible thermodynamics.
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I. INTRODUCTION reactions take place. Letbe the internal energy density,

=p~ ! the specific volumeg; the molar fraction of species

Irreversible thermodynamics is a subject with many dif-i, p the hydrostatic pressure, af the generalized fluxes.
ferent sects. Since the publication of the celebrated book opgy example,qﬁi(l):ji(l) is the mass f|ux,¢,i(2):;i is the

nonequilibrium thermodynamics by De Groot and Mazur iny5celess symmetric part of the pressure ter1§p,r ¢i(3)

1962[1], there has been a great amount of research done on @i is the heat flux, etc. Here the indéxefers to theith

this subject in the past, especially in extended irreverSibl?nolecular species and the superscriptepresents the vari-
thermodynamics(EIT). Notably there are two schools of ous kinds of fluxes. Except for=1,3, in generals® is a
. "™~ 1

theories in EIT. The first school of EIT is due to Jou, Casse- ) 5. i i
Vazquez, and Lebofi2] and Miller and Ruggeri, respec- tensor function of ordew (_Qi is the con'tractlon of thg third
tively [3]. In this school of EIT entropy is considered as aorder tensge From a physical point of view, we may include

state function which satisfies the entropy balance equatiorrUfficiently many fluxes for an appropriate description of ir-

H (1 2 — a
where the entropy production is semipositive definite. Its ki_reve_r13|bale.processes. Lat=(x",x%,... X") = (€, v,{Ci},{ i
netic foundation is based on the linearization offjnin =P  ¢iHi=12,...5,a=1.2,...k) be the set of thermody-
terms of Grad's moment methde], wheref is the one- namic va_rlables. Leﬂe[_a,b] be an empirical temperature
particle distribution function. The second school of EIT is N an arbitrary scale which can be employed to measure the

due to Eu, where the calotrofigompensation functiony is hotness or the coldness of a nonequilibrium system at a local

. . . - e int (F,t). At the moment it is difficul ri he re-
considered as a state function which satisfies the calotrop). t( ’.t) L the moment it is d cu_t to describe t. ere
. L o tionship betweerd and x. However, in the Appendix we
balance equatiof5]. Its kinetic foundation is based on the . . : . ; .
: . . . show thaté is a differentiable and monotonically increasing
expansion off in exponential form in terms of tensor Her-

it I ials. Thi ) on is al losel function of the local thermodynamic functioh, which in
mite polynomials. 1his series expansion IS also Closely ey .. hacomes &1 function ofx via the constitutive relation.

lated to Grad’s method. Recently Eu has rederived the calotrpe giate of a nonequilibrium local system is then specified

ropy balance equation from the Carnot theorem anq)yX wherex-R3XR* — R is assumed to be a function of
Clau5|us’s. |nequal|tj_6]. The main objective of .th|s PAPET IS (lassCl in (), and satisfies the following set of dynamical
to reexamine the main features of these theories of EIT in agquationS' '

alternative approach which is independent of kinetic theory
in terms of the Boltzmann equation. Since dissipative fluxes dp=—pV -0, 1)
are considered as independent variables in addition to the
conserved variables in EIT, the traditional balance equation

for the internal energy density must be modified so that con- pehiCi==V-J;, 1sisr @)

tributions due to the dissipative fluxes are taken into consid- - P A A

eration. Thus we construct a local formulation of the first law pdili=—V-P, P=m+pyl+pl )
and the second law of thermodynamics accordingly, such s o o oo

that their global forms are equivalent to Kelvin's principle pdie=—V-Q—P:Vd, (4)
[7] and Clausius’s principl€8]. We then show that our for- A )

mulation gives rise to a generalized entropy balance equation ptid'=Z{+A{", 1sisr, lsask 5

and a generalized Gibbs relation, which reduce to the results = ) ) )

obtained by Jou, Casse-Vazquez, and Lebon under appropthere di=4d;+0-V is the substantial differential operator,

ate conditions. U the hydrodynamic velocityp,, the bulk viscous pressure
Consider a system of molecules incomponents con- (the excess normal strgsand| a unit second rank tensor.

tained in a regiof) C R® with volumeV, where no chemical Furthermore,Z® is a kinematic term depending op® as
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well as the gradients of, v, c;, etc., whileA{" is a dissipa- A. Linear irreversible thermodynamics (LIT)

tive term which does not involve the gradientsxofin gen- Multiplying Eq. (1) by p, Eq. (2) by —«; and summing
eral A{" is a nonlinear function ok such that the decompo- gveri, then adding these results to Eg) we obtain

sition of Z and A{ in Eq. (5) is unique. The detailed R

expressions of® and A¢ depend on the specific model un- p{d,e+pdr—3;uidici}=—V-Q—[#+ppl]:Vi

der consideration. For example, Jou, Casse-Vazquez, and Le-

bon considered the following set of equations for Ej: +Eiﬂiﬁ'ji
Lo e o1 ed 2 -1 b b =—V-(Q- i)
pdipp=—170 p{V-U+ 7, pB'{QV-Q— 175 pPpy=2"+A>, e e
(6a) —{(THppl):VI+Z3;- Vi,
()

N— — 1 O -1 2% =
paQ T PAVET T pBAGTV -7 where “:” denotes contraction of tensors.

+77 B NGV p,— 71 1p0 Let Qc.=Q—31;J; be the net heat flux, and set
=Z'+A", (6b) Sq=—{(F+ppl):Va+33; Vui}. 8
- - i 5512 9.5 v
o__ -1 i@ o1 2_ -1 o It is well known that[Vi]'“’, V-0, andVy; are the ther-
pdi 72 2p7VU] 72 2pBn9lV Q] T2 P modynamic forces for the viscous flows and diffusion, re-
=Z'+AY (6c)  spectively. Thuss 4 is an internal work. The energy associ-

ated with 24 is a dissipative energy which cannot be
b 1 h 12 .t 1. converted to other useful work.
whereA®=—7, PPb, A =—m pQ, A= —T P, 6N Since mass flux can also contribute to the heat flux, we
and » are the bulk viscosity, thermal conductivity, and Sheardefinepdq/dt: —€~Qc, wheredq is the heat added to the

viscosity, respectivelyro, 7;, 7, are the relaxation imes for -, svstem per unit mass. On the other hand, it is evident

the fluxespy, Q, and 7, respectively,8’ and 8 are con-  that Eq.(4) is equivalent to Eq(7), which can be rewritten
stants, andy is a positive, monotonically increasing function g

of 6 of classC! on[a,b]. Later it will be identified with the
local thermodynamic temperatuiiein absolute temperature de=dg+dw+dqq, 9

scale. Furthermorg ¥V i]® represents the traceless symmet- ]
wheredqgy=p 13 4dt. Therefore Eq(9) is the local formu-

ric part of VU. lation of the first |
In the next section we discuss the local formulation of the'@"0"n ©7 the Tirst faw.

first law and the second law of thermodynamics for a non- Let gf:r?f_dwzddlﬁ pdv _bzi'“idci ' Thde local formu-
equilibrium system, ation of the second law can be expressed as

ENDE=0, (109

Il. LOCAL FORMULATION OF THE FIRST LAW . o
AND THE SECOND LAW OF THERMODYNAMICS 24=0, 24=0 only at thermodynamic equilibrium,
(10b)

In the following discussions work will be considered posi-
tive if it is done on the system and negative if it is performedwhere “/\” represents the exterior product of differential
by the system. On the other hand, heat is considered positierms.
if it is absorbed by the system, while it is negative if it is  Denote X=(»,cy,...,¢,)=(x?...x"), and assume that
liberated by the system. P, ui, areC? functions ofx andé. In the Appendix we show
In order to consider the local formulation of the first law that by Eq.(109 there exist a positive functiog() and a
and the second law of thermodynamics we first divide thescalar-valued functions such thatg and ¢ are functionally
material system into a sufficiently large number of sub-independent, and furthermor&s gdy [9]. This implies that
systems. Consider an arbitrary local system centered at g~ is an integrating factor of. Once an integrating factor is
with volume elemendr at timet. The thermodynamic state obtained, we can construct infinitely many integrating fac-

of the local system is specified by=(x*,...,x") with vol-  tors. We can therefore choogeas a positive, monotonically
ume elementx and satisfies the dynamical equatidd$—  increasing function of such thag(#6) can be identified with
5). the local thermodynamic temperatufan absolute tempera-

In equilibrium thermodynamics the static pressywds  ture scald10]. Thus
considered as the force for the volume change, and the
chemical potentialsu; as the generalized forces for the Tdy=de—dw=de+pdv—3;u;dc;. (11
change of matter. Thus in the absence of external forces the
work 1-form dw is given bydw= —pdv+3 u;dc;. How- With Egs.(7) and(11) we can obtain the following balance
ever, the work® u;dc; is not included in the balance equa- equation fory.
tion for the internal energy densitygiven by Eq.(4). Hence ..
Eq. (4) must be generalized in an appropriate manner. pdip+V-(Q. T H=E,, (12
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where are the generalized potentials conjugatepta Q, and 77,
respectively. Thus, except for the first term on the right hand
E=T }34-0-VInT) side of Eqs(14) and(16), the remaining terms are the con-
tributions to the work 1-form and the net heat flux, respec-
_ —T‘1{Qc~ﬁ In T+ (#+ Pbi)iﬁﬁ+215i'ﬁﬂi}- tively, due to the additional independent variabfgs Q,

A and 7. Again setpdg/dt=—V-Q. andé=de—dw. By Eq.
In view of the expressions d.T ! and E, given above, (13), the local formulation of the first law can be written as
we notice that these quantities are identical to the entropy

currentJ; and entropy productiom, respectively, in linear de=dg+dw+dgy, dogg=p 13.dt,

irreversible thermodynamics. Furthermore, by Ed4) and

(12), ¢ can be identified as the entropy densityThus Eq.  while the local formulation of the second law can be written
(11) is the Gibbs relation, while Eq12) is the entropy bal- as
ance equation. It should be emphasized that @4) is a
consequence of théFrobeniug condition £Adé=0, where

T~ !is an integrating factor of the 1-forfi=de—dw. Tra-
ditionally, Gibbs relation(11) is obtained via local equilib-
rium assumption. However, this assumption is not required 3,,=0, 3,=0 only at thermodynamic equilibrium.
in our approach.

ENdE=0,

Hence by the integrability conditiofi0g there exist a local

B. Model equations of Jou, Casse-Vazquez, and Lebon in EIT  thermodynamic temperaturg(¢)=T in absolute tempera-

ture scale and a scalar-valued functignsuch that
In the theory of EIT proposed by Jou, Casse-Vazquez, on

and Lebon,p,, Q, and # are considered as independent

variables in addition tce, », and c;. By examining Egs. Tdy=de+pdv—{ro{ *ppdpp+ 7:(AT) "'Q-dQ
(6a—(6c), we multiply Eqg. (1) by p, Eg. (6a by i
(=& *pro)py, Eq. (6b) by (—\g) *p7Q, Eq. (60 by T ra(2y) A7 (7
—27) lpr,#, and add th lts together t .
\(Ne tz)en gg%;n and & ese results together to &4 is the generalized Gibbs relation. Furthermore, ER)
yields
pldie+pdiv—[7of *PypdiPp+ 71(Ag) Q- dQ pdr+ V- (QT H=T (4= Q- V In T)=Z,, "
. 18
+75(27)  t7d 7} = —VQc+ 2y, (13
. with
with
By=0+ (B' PO+ BO- g, (14) Ee=({N) 7 'pp+ (A\TA)TIQ-Q+(29T) 1 7. (19

L. , . o Notice thatQ.T~'=J, is the entropy currenS .= o is the
34=Qc¢-V Ing+{¢ - pp+(Ag)T'Q-Q+(27y) "t 7). entropy production, ang'=s is the entropy density that sat-
(19  isfy the entropy balance equati¢hg).

In view of Eq. (13) we define the generalized work 1-form
dw by C. General case

From the discussions above we notice that a generalized
dw=—pdv+Xpdpy+ Xp- dQ+ X, :d 7, (16)  entropy balance equation can be obtained if the internal en-
ergy balance equatio) is modified such that contributions
where due to the dissipative fluxeg{ are taken into account. To
this end, we multiply Eq(1) by p, Eq.(2) by — u; and sum
Xp=—70(p{) *Pp, Xn=—71(pA@) 'Q, overi, Eqg. (5) by X* and sum ovei and «, respectively.
Adding these results to E¢4) yields the following equation
Xe=—T1o(p2m) 17 equivalent to Eq(4):

p{die+pdiw—3 uidCi+3; (XAt} = =V - Q= (F+ppl):Va+ 3w V- J;+3; X :[Z0+Af]

=—V-Qc—{(F+Ppl):VU+3J;- Vi — 3 JP & (V- XO)I+3 XE(ZE+V-WE+AY). (20)
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whereW ¢ is the flux of % [11], X (the conjugate variable tains the dissipative energyy and the dissipative internal

of (“bia) is the generalized potential, a@ is the net heat flux wo[k due to the net heat flux with thermodynamic force
given by -VinT
Based on the notion of uncompensated heat introduced by
@c=©—2iﬂiji+2i,axfki‘l'fl- (21)  Clausius, Eu has recently obtained Eg5') from Carnot
theorem and Clausius inequalit§]. He calledZE .. the calot-
Denote ropy production,(ch‘1 the calotropy current, ang the
. A . calotropy density. So far the results in E¢®5) and(25') do
9= —{(F+ppl):VU+Z3;- Vi =% QU (V- X))} not depend on the specific expressionZpfand A . Thus
- Egs.(25) and(25') are general equations in irreversible ther-
+3 X UZFH VWA, (220 modynamics that are not restricted to the framework of the
. . R Boltzmann equation, although kinetic theory can be helpful
Similar to Vi and Vi, V- X can also be considered as a jn the construction oZ® and A®. As a matter of factZ®
generalized thermodynamic force attributable to the tensorigdng A« can be obtained from phenomenological theory such

flows W{*. Thus the first term of Eq22) represents a dissi- a5 the model equatior(6a)—(6¢) considered by Jou, Casse-
pative internal work. We cally the dissipative energy vazquez, and Lebon.

which cannot be converted to other useful work. In the school of EIT by Jou, Casse-Vazquez, and Lebon
Next we define the generalized work 1-fordw for a  and by Miller and Ruggeri, respectively, entropy densitis

nonequilibrium local system by a state function which satisfies the entropy balance equation,
- while in the school of EIT by Eu, calotropy densityis a

dw=—pdv+3udc—2; X :dg. state function which satisfies the calotropy balance equation

(25'). We devote the remaining section to investigating the

Since mass flows and other tensorial flows can also Comribr'elationship between these two approaches in terms of Egs.
ute to the heat flux, we define the local rate of change of heatg—)) and (6a—(60).

per unit massig/dt by In view of Egs.(6a—(6c) and(22), E . can be rewritten as

d L . _ e - _
Pd_?:_VQC- Ec=—T YV-0)[pp+pL7o Xs]
— T YVa)@:[7+2pn7, X]
Hence Eq(20) can be rewritten as 2
T WT- [T 'Q+prr X
de=dg+dw+dgy, dgg=p 'Z4dt, (23 [T7Q+ ph7y ")
o _ VAT X W+ Xp W+ X )
wheredx'=(Vx')-df+(d;x")dt is the substantial differen- L .
tial. +p{B'[{75 XV - Q+AT7y Xy Vo]
Equation(23) is the local formulation of the first law. On 1 . 22 )
the other hand, if we sef=de—dw, then the local formu- +BINT 7 Xy V- 7+ 277 X [VQ] D]}
lation of the second law can be expressed as 1 -1 1 N e o
—T Hp7 XpPptp7o Xn- Q+p7y X177}
(26)

24=0, 24=0 only at thermodynamic equilibrium. We must determin&,, Xy, X;, ¥y, ¥y, and¥, such that
(24b Eq. (26) becomes the entropy productian given by Eq.

(19). SinceV -4, [Vd]®, andVT are functionally indepen-

dent, we set the first three terms of E86) to zero. Then

ENAE=0, (249

Therefore there exist a local thermodynamic temperaiure
in absolute temperature scale and a state fungafiorhich is
additive under composition of subsystefi§)], such that Xp=—10(p0) 1Py, Xp=— Tl(pAT)’lé,

g=Tdy=de+pdv—3;mdci+3; X :dp® (25 X,= — rp(p27) 17, (273

is the generalized Gibbs formula. Further, E20) yields the  and the last term of E¢26) becomes
equation
o o=({T) P+ (\TH) 1Q-Q+(29T) M 7,
pdt¢+v'(QcT71):Ecr (25) L
which is the same as E¢l9). Thus Eq.(26) reduces to
whereE.=T 34— Q¢ V In T]. _ L
Therefore by considering{* as the additional indepen- He= o+ VAT H(XpWpt X Wyt Xy
dent .variables.and l?y generalizipg I?—(d;.4) appropriately to _(pr(jJr,BQ, ).
take into consideration the contributions duegtd, we can
obtain a generalized entropy balance equaf@i). In Eq. It is evident that=E .= o if and only if the divergence term
(25'), E.=0 is the generalized entropy production. It con- vanishes. Consequently,
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Vo=—15pBLTQ, W,=—7pB\T?%, W¥,=0, Let ﬁ(t)=dE—dW. Notice thatﬁ=dQ when the system is
(27p  at thermal equilibrium. The global form of the second law
can be expressed as

and “ -
QONdQ=0, (293

QT =T HQ+XpWp+ X W+ X V)

=T 1Q+8'p,Q+BQ- 7

Q4=0, Qy=0 only at thermodynamic equilibrium.
(29b

. . Equation (299 is the inaccessibility condition of Cara-
HenceQ T '=Js, E.=0, andy=sif Eq. (279 and(27)  theodory[12]. The Caratheodory principle states that from
are satisfied. an arbitrary initial point(statg there is a finite regiofiset of

Therefore, under the approximations of Eq87a and states of finite measure in the thermodynamic spakat
(27b) in conjunction with the specific expressions4ff and  cannot be reached by an adiabatic process, reversible or ir-

Af as given in Eqs(6a—(6¢), E, Q.T % andyreduce to reversible. This region may be taken arbitrarily close to the

the entropy productiow, entropy currentiy, and entropy ~'Mual state.

densitys, respectively. For this reason, it appears more ap- As a consequence of EQ99 there exist a global ther-

1 modynamic temperatur'E(t) and a global calotropy function
propriate to callyy the generalized entropy denan,CT W (t) such that

the generalized entropy currer,. the generalized entropy
production, and Eq(25’) the generalized entropy balance O=dE—dW=Td¥
equation. Finally it should be emphasized that the parameters '

T, p, #i, andX{" are constitutive parameters that are deter-Therefore the generalized Gibbs formula in global form can

mined by phenomenological considerations. be written ag13]
IIl. GLOBAL FORMULATION TdV=dE+pdV—3udCi+3; X" :dd{. (30
OF THE FIRST LAW PP . .
AND THE SECOND LAW In Eq. (30), p, ui, X{* are the global intensive thermody-

namic variables. For examplp,is defined as follows:

So far the first law and the second law of thermodynamics
for a nonequilibrium system have been formulated in terms - R
of the local thermodynamic variablesthat satisfy the dy- P E:J' (ppdp)dr.
namical equation$l)—(5). Thus the state of the local sub-
system centered &twith volume elementf is described by The other intensive global thermodynamic variables are de-
x with volume elementdx in the thermodynamic space. fined in a similar manner. Thus
When the global system undergoes an irreversible process,
the local system correspondingly also undergoes a similar d\p _f
. . . : S T(pd;)dT,
irreversible process at a microscopic scale which is mapped dt
to a path in the thermodynamic space. However, it is difficult
to describe precisely what this microscopic irreversible proand Ed.(30) can be obtained from Ed25) by integrating
cess is. For this reason we next consider the global formulz@ver the volume of the material system.
tion of the first law and the second law. It should be re- We now prove that Eq(29) is equivalent to Kelvin's
marked that the global formulation is quite different from theprinciple and Clausius’s principle. These principles are
local formulation. If the boundary of the material system isstated as follows.
impermeable to the flows oV, then the thermodynamic 0 Kelvin's principle: In a cycle of processes, it is im-

variables of the global system would be reduce# &/, and possible to transfer heat from a heat reservoir and
{Ci}, whereE, V, {Cj} can be obtained by integrating », convert it all into work, without at the same time
{ci} over the volume of the material system. Let transferring a certain amount of heat from a hotter to
a colder body.
dE fp € d_Q:_f V* 2 de fzd (i)  Clausius’s principle: It is impossible that at the end of
dt dt ' ’ a cycle of processes, heat has been transferred from a

colder to a hotter body without at the same time con-
and verting a certain amount of work into heat.

dw o S The proof given below is patterned after the proof by
rT3 f — p{Pdir—SipidiCi+ 3 Xy} Kirkwood and Oppenheim for equilibrium thermodynamics
[8]. (1) Let Ty=const,i=1,2 be two hypersurfaces of con-
By Eg. (20) we obtain the first law of thermodynamics in Stant temperaturesT;>T,, in the thermodynamic space
global form as with coordinatez=(z,,2,,...,2,) given by the global ther-
modynamic variableg, V, C;,... . Lety; be a reversible

dE=dQ+dW+dQy. (28 isotherm on theTl; = const surface. We assume that heat ab-
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sorbed or liberated by the system along any reversible isgprinciple. Hence no adiabatic path, reversible or irreversible,
therm outside the phase transition region is a continuousonnects; andz;. By the same reasoning we can show that
function ofz. Consider an arbitrary initial statg ony;. Let ~ AQy/1##AQg/3,. Since AQz3—AQz3=AQ;1—AQsy
statesz; andz] be further to the left ok, such that the heat =AQq17—AQ3/3:#0, Z3#23. Therefore any point along
absorbed by the system frazfi to z; and fromz] toz; along 73 betvyee[z3 andz; is inaccessible froE1 by an adiabatic
y1, respectively, is positivéV is increasing fronz) to z; ~ Path with 2=0. Next we locatez, andz, on v, such that

APPENDIX

In this appendix we consider the integrability condition

(10a of the 1-form & For simplicity we denoteX
=(x?,...xX")=(v,Cq,....C;) and @, — g, — )
=(W,,...,.Ww,). Assume thatp, u; are C! functions of
(X,0). We then rewritef in terms ofw;'s as

g=dxi+ pdv—zi mide=dxt+ X, wi(x,8)dx.

=2
(A1)

dw=aw; for all e[a,b] andj,k=2.

and fromz; to z;). Through stateg; andz] we draw revers- AQzz =AQyy and AQgpr=AQyy . Similarly any point
along a reversible path. We now prove that no points alongYPersurface betweeh, =const andr;=const. Lety be an
. sects the reversible adiabatic path betwefmandz; at z,.
versible.
’ ) adiabatically inaccessible from . Indeed a region generated
sorbed by the system in this cycle AQ,,,=—AQ1,>0,
_ proven the equivalence of E(R9) and Clausius’s principle.
Eq. (28) we haveAE=AQ;,;+AW=0 in the cycle. Hence
¢ as independent variables in addition to the conserved
system AW<0). Similarly no adiabatic path exists between
Consideration the contributions of the dissipative fluxes. As a
no points betweem; andz; along y, can be reached from equation as well as a generalized Gibbs relation can be ob-
>T,, such that it intersects the reversible adiabatic path§on is assumed in order to obtain the entropy balance equa-
adiabatic pathgreversible or irreversibje As T is arbitrary, (28) is equivalent to Kelvin's principle and Clausius's prin-
entropy balance equatiofi8) by examining the dynamical
adiabatic paths wit)=0. This region can be taken arbi-
(2) Let Tj=const,i=1,2,3, be hypersurfaces of constant
=const hypersurface. Consider an initial stafeon v, . Let
positive. SimilarlyAQ,» is also positive. Througl; and
tively. Locate pointszz and z; on y3; such thatAQsy
statesz, andzs. Furthermorezs#z;. It can easily be proved thav\d¢=0 if and only if dé=0
heat absorbed by the cycle MQ=AQ33 +AQ4/1=AQ3z
(A2)
net result of the cycle is to transfer he®Q33 at T; to heat Hereaj=a/axj. Notice that Eq(A2) is similar to Maxwell’'s

ible adiabatic pathsXQ=0) that intersect isotherny, at Zlothg yztrt:etvlve?nzf ?r%fj_zz IS w}:a;)ccessmlte).tfrom}[ by adlat-
z, andzj, respectively. Notice that bot®{* and 34 vanish atic paths. in fact, et =const be an arbitrary temperature
the adiabatic pathg;—z, and z]—2z; are accessible from :Z%Z‘rizgeogdfgﬁgzccogf; Eﬁ’vigsﬁ'r:]cdez\,’v;czh Ir;tﬁ(;sﬁ:itesr the
statez, by an adiabatic path, witkl=0, reversible or irre- P en 3 c’

: . : , Locatez, and z, on vy by the conditionAQ,.=AQ;; and
A Suppose_an adiabatic path ,eX|s,ts betweeandz, where AQuy=AQ,y . Then any point along betweere, andz, is
Q=0. Consider the cycle;—z,—z;—z;. The net heat ab-

e s in this manner cannot be connected fran by adiabatic
where we have used the abbreviatidQ,; to denote the paths withQl=0, reversible or irreversible. Again we have
heat absorbed from staté to statez, . On the other hand, by

-~ A% _ i In conclusion, we have considered the dissipative fluxes
—AW=AQ;/;. This is impossible since the net heat ab-
sorbed would be converted completely into work done by the' | .
P Y y %/?r;?blfesel v, anc?j CiH We thec?lreformuladte tr|1ebloca:<f0rms

; ) . . of the first law and the second law accordin taking into
z, and z;. By the same reasoning no reversible adiabati e gly by g
paths can cross each other. Hemge 7, . This implies that  5nsequence of this approach, a generalized entropy balance
z; by adiabatic path with)=0, reversible or irreversible. tained. The method discussed in this paper is very different
Next, let y be an isotherm on th&=const surfaceT,;>T from the traditional approach in LIT, where the Gibbs rela-
z,—z, andZ]—2j atz, andz4, respectively. By the same tion. Finally we show that the global formulation of the sec-
reasoning no points alorg —z, can be reached fromy by ond law given by Eq(29) in conjunction with the first law

. - ~ ciple. We have also investigated the conditions such that the
a region of finite volume between the two surfadgsand generalized entropy balance equati@s') reduces to the
T, can be generated which is inaccessible from statby
equations(6a—(6c) for the dissipative fluxes proposed by
trarily close toz,. This proves the equivalence of EQ9)  Jou, Casse-Vazquez, and Lebon in EIT.
and Kelvin’s principle for a nonequilibrium system.
temperatures in the thermodynamic space Witp>T,
>T;. Let v, i=1,2,3 be reversible isotherms on thg
z; andz; be located further to the right af such that the
heatAQ,, absorbed by the system along from z, to z; is
Z] we draw reversible adiabatic paths that intersgcat z,
andz,, respectively, and intersegt at z; andz;, respec-
=AQ;; andAQ33»=AQ;;». We now prove the assertion
that no adiabatic path, reversible or irreversible, connects
Suppose there exists an adiabatic pefﬂaF(O) connecting for £&=0 [14]. This in turn implies
z, andz;. Consider the cycle, —z3—z3—2z;—2,. The net ’
—AQ;1=0. On the other hand, by Eg28 we have
AW=0. But this is impossible foAW=0 implies that the
AQy at T;>T; without converting a certain amount of relations at constant temperature. By EA2) there exists a
work into heat at the same time. This is against Clausius'€? function V(%,6) such thatw;(x, 0) = — d;V(X,6). Thus



dv=—
=2

w;(X,0)dx —u(x,0)de,
whereu(X, 8) = — d,V(X,0). Consequently,
E=d(x*—V)—ude.

By Eq. (109; £¢/\dé=—d(xt—V)Adu/\d#=0 implies
xt—=V=h[u(x, ), 6]
for someh, and thus

E=dh(u,6)—udé. (A3)

Now we prove the existence of a local thermodynamic tem-

peratureT such thatT ! is an integrating factor fo&. The

local temperature can be measured by inserting a thermod
namic probe into a portion of the system in a manner de

scribed by Muschik as the contact temperafl®. LetU be
a neighborhood of an arbitrary local point,{) of the sys-
tem. Letde[a,b] be the empirical temperature . Con-
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wherec is a constant. In order to find the integral surfaces of
Eq. (A4) we considerc as a new independent variable and
denote it byy. Thenu= ¢t and

é=d(zu—udf)=d(zty)— ytd o= d(zt) +ztdy— ytdeé.
But d(zt)=tdé. Thus

§=(zt)d¢=(exp f z‘1d0>d¢:g(0)d¢.

Since we have choser(6)>0 for all d<[a,b], we now

identify
T=g(6) =ex;{ f zld0>

%elfs the local thermodynamic temperature. A§df=Tz !

>0, g can be inverted to yield as a function off. Next we
consider the significance ofV. Since x'—V(X,6)
=h(u(x, 6),0) andh(u(x,8),0)=z(8)u, we have

sider two subsystems in contact with each other. Each sub-

system is described by{, 6,), i=1,2 and satisfies EGA3),

respectively. Within a short period of time, both subsystems

and the combined system have the same temperdturke
combined system is then described b &,,6) and also

satisfies Eq(A3). Suppose there is no interaction between

the two subsystems. Thef=&,+ &,. Hence,

dh(u,8)—ude=d[h(uy,8)+h(u,,8)]— (U +u,)dé.

This equation can be solved by setting

u=u;+u, andh(u;+u,,8)=h(u,d)+h(uy,6).

Consequently
h(u,8)=2z(6)u,

where z is an arbitrary function ofé on [a,b]. We can
choosez such thatz(6) >0. Thus

&=d(zu)y—uds. (A4)

The Pfaffian equatiog=0 has an integral curve given by

u=cz ! exp{ J zlda) =ct(0),

e=V+zu. (A5)

This shows thak is a function ofx and 6. Denote
V(X,0)=V(X,6(T)=VX,T),

e(x,0)=€(X,T).

By  definition,  u=—a,V(X,8)=—dV(X,T)dT/de
=uTz !, whereu=—4;V. Hence
Tu=zu (AB)
and
e=V+Tu. (A7)

The differential of Eq(A7) in conjunction with Gibbs rela-
tion (12) yieldsu=s, and

dV=—pdv+ >, wdc—sdT. (A8)
I

By Egs.(A7) and(A8) we can conclude that is the Helm-
holtz potential.
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