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Local formulation of the first law and the second law of thermodynamics
for a nonequilibrium system

M. Chen
Vanier College, 821, Sainte Croix Avenue, St. Laurent, Quebec, Canada H4L 3X9
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In this paper we construct a local formulation of the first law and the second law of thermodynamics for a
nonequilibrium system such that their global forms are equivalent to Kelvin’s principle and Clausius’s prin-
ciple. We also study the relationship between the entropy balance equation and the calotropy balance equation
obtained by Eu@Phys. Rev. E51, 768~1995!# by examining the model equations of the nonconserved variables
proposed by Jou, Casse-Vazquez, and Lebon@Rep. Prog. Phys.51, 1105~1988!; Extended Irreversibie Ther-
modynamics~Springer, Heidelberg, 1993!# in extended irreversible thermodynamics.
@S1063-651X~97!07607-1#
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I. INTRODUCTION

Irreversible thermodynamics is a subject with many d
ferent sects. Since the publication of the celebrated book
nonequilibrium thermodynamics by De Groot and Mazur
1962@1#, there has been a great amount of research don
this subject in the past, especially in extended irrevers
thermodynamics~EIT!. Notably there are two schools o
theories in EIT. The first school of EIT is due to Jou, Cas
Vazquez, and Lebon@2# and Müller and Ruggeri, respec
tively @3#. In this school of EIT entropy is considered as
state function which satisfies the entropy balance equat
where the entropy production is semipositive definite. Its
netic foundation is based on the linearization of ln(f) in
terms of Grad’s moment method@4#, where f is the one-
particle distribution function. The second school of EIT
due to Eu, where the calotropy~compensation function! c is
considered as a state function which satisfies the calotr
balance equation@5#. Its kinetic foundation is based on th
expansion off in exponential form in terms of tensor He
mite polynomials. This series expansion is also closely
lated to Grad’s method. Recently Eu has rederived the ca
ropy balance equation from the Carnot theorem a
Clausius’s inequality@6#. The main objective of this paper i
to reexamine the main features of these theories of EIT in
alternative approach which is independent of kinetic the
in terms of the Boltzmann equation. Since dissipative flu
are considered as independent variables in addition to
conserved variables in EIT, the traditional balance equa
for the internal energy density must be modified so that c
tributions due to the dissipative fluxes are taken into con
eration. Thus we construct a local formulation of the first la
and the second law of thermodynamics accordingly, s
that their global forms are equivalent to Kelvin’s princip
@7# and Clausius’s principle@8#. We then show that our for
mulation gives rise to a generalized entropy balance equa
and a generalized Gibbs relation, which reduce to the res
obtained by Jou, Casse-Vazquez, and Lebon under appr
ate conditions.

Consider a system of molecules inr components con-
tained in a regionV,R3 with volumeV, where no chemica
561063-651X/97/56~1!/285~8!/$10.00
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reactions take place. Lete be the internal energy density,n
5r21 the specific volume,ci the molar fraction of species
i , p the hydrostatic pressure, andf i

a the generalized fluxes

For example,f i
(1)5JW i

(1) is the mass flux,f i
(2)5pJ i is the

traceless symmetric part of the pressure tensorPJ i , f i
(3)

5QW i is the heat flux, etc. Here the indexi refers to thei th
molecular species and the superscripta represents the vari
ous kinds of fluxes. Except fora51,3, in generalf i

a is a

tensor function of ordera ~QW i is the contraction of the third
order tensor!. From a physical point of view, we may includ
sufficiently many fluxes for an appropriate description of
reversible processes. Letx5(x1,x2,...,xn)5(e,n,$ci%,$f̂ i

a

5r21f i
a%,i51,2,...,r ,a51,2,...,k) be the set of thermody

namic variables. LetuP@a,b# be an empirical temperatur
in an arbitrary scale which can be employed to measure
hotness or the coldness of a nonequilibrium system at a l
point (rW,t). At the moment it is difficult to describe the re
lationship betweenu and x. However, in the Appendix we
show thatu is a differentiable and monotonically increasin
function of the local thermodynamic functionT, which in
turn becomes aC1 function ofx via the constitutive relation.
The state of a nonequilibrium local system is then specifi
by x, wherexi :R33R1→R1 is assumed to be a function o
classC1 in V, and satisfies the following set of dynamic
equations:

dtr52r¹W •uW , ~1!

rdtci52¹W •JW i , 1< i<r ~2!

rdtuW 52¹W •PJ , PJ5pJ1pbÎ1pÎ ~3!

rdte52¹W •QW 2PJ :¹W uW , ~4!

rdtf̂ i
a5Zi

a1L i
a , 1< i<r , 1<a<k ~5!

where dt5] t1uW •¹W is the substantial differential operato
uW the hydrodynamic velocity,pb the bulk viscous pressur
~the excess normal stress!, and Î a unit second rank tensor
Furthermore,Zi

a is a kinematic term depending onf̂ i
a as
285 © 1997 The American Physical Society
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286 56M. CHEN
well as the gradients ofe, n, ci , etc., whileL i
a is a dissipa-

tive term which does not involve the gradients ofx. In gen-
eralL i

a is a nonlinear function ofx such that the decompo
sition of Zi

a and L i
a in Eq. ~5! is unique. The detailed

expressions ofZi
a andL i

a depend on the specific model un
der consideration. For example, Jou, Casse-Vazquez, and
bon considered the following set of equations for Eq.~5!:

rdtpb52t0
21rz¹W •uW 1t0

21rb8zg¹W •QW 2t0
21rpb5Zb1Lb,

~6a!

rdtQW 52t1
21rl¹W g1t1

21rblg2¹W •pJ

1t1
21rb8lg¹W pb2t1

21rQW

5Zh1Lh, ~6b!

rdtpJ52t2
212rh@¹W uW #~2!1t2

212rbhg@¹W QW #~2!2t2
21rpJ

5Zt1L t, ~6c!

whereLb52t0
21rpb , Lh52t1

21rQW , L t52t2
21rpJ , z, l,

andh are the bulk viscosity, thermal conductivity, and she
viscosity, respectively,t0 , t1 , t2 are the relaxation times fo
the fluxespb , QW , andpJ , respectively,b8 and b are con-
stants, andg is a positive, monotonically increasing functio
of u of classC1 on @a,b#. Later it will be identified with the
local thermodynamic temperatureT in absolute temperatur
scale. Furthermore,@¹W uW # (2) represents the traceless symm
ric part of¹W uW .

In the next section we discuss the local formulation of
first law and the second law of thermodynamics for a n
equilibrium system.

II. LOCAL FORMULATION OF THE FIRST LAW
AND THE SECOND LAW OF THERMODYNAMICS

In the following discussions work will be considered po
tive if it is done on the system and negative if it is perform
by the system. On the other hand, heat is considered pos
if it is absorbed by the system, while it is negative if it
liberated by the system.

In order to consider the local formulation of the first la
and the second law of thermodynamics we first divide
material system into a sufficiently large number of su
systems. Consider an arbitrary local system centeredrW
with volume elementdrW at time t. The thermodynamic stat
of the local system is specified byx5(x1,...,xn) with vol-
ume elementdx and satisfies the dynamical equations~1!–
~5!.

In equilibrium thermodynamics the static pressurep is
considered as the force for the volume change, and
chemical potentialsm i as the generalized forces for th
change of matter. Thus in the absence of external forces
work 1-form dw is given bydw52pdn1Sm idci . How-
ever, the workSm idci is not included in the balance equ
tion for the internal energy densitye given by Eq.~4!. Hence
Eq. ~4! must be generalized in an appropriate manner.
e-
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A. Linear irreversible thermodynamics „LIT …

Multiplying Eq. ~1! by p, Eq. ~2! by 2m i and summing
over i , then adding these results to Eq.~4! we obtain

r$dte1pdtn2S im idtci%52¹W •QW 2@pJ1pbÎ #:¹W uW

1S im i¹W •JW i

52¹W •~QW 2S im iJW i !

2$~pJ1pbÎ !:¹W uW 1S iJW i•¹W m i%,

~7!

where ‘‘:’’ denotes contraction of tensors.
Let QW c5QW 2S im iJW i be the net heat flux, and set

Sd52$~pJ1pbÎ !:¹W uW 1S iJW i•¹W m i%. ~8!

It is well known that@¹W uW # (2), ¹W •uW , and¹W m i are the ther-
modynamic forces for the viscous flows and diffusion, r
spectively. ThusSd is an internal work. The energy assoc
ated with Sd is a dissipative energy which cannot b
converted to other useful work.

Since mass flux can also contribute to the heat flux,
definerdq/dt52¹W •QW c , wheredq is the heat added to th
local system per unit mass. On the other hand, it is evid
that Eq.~4! is equivalent to Eq.~7!, which can be rewritten
as

de5dq1dw1dqd , ~9!

wheredqd5r21Sddt. Therefore Eq.~9! is the local formu-
lation of the first law.

Let j5de2dw5de1pdv2S im idci . The local formu-
lation of the second law can be expressed as

j`dj50, ~10a!

Sd>0, Sd50 only at thermodynamic equilibrium,
~10b!

where ‘‘̀ ’’ represents the exterior product of differentia
forms.

Denote x̂5(n,c1 ,...,cr)5(x2,...,xn), and assume tha
p, m i , areC

1 functions ofx̂ andu. In the Appendix we show
that by Eq.~10a! there exist a positive functiong(u) and a
scalar-valued functionc such thatg andc are functionally
independent, and furthermore,j5gdc @9#. This implies that
g21 is an integrating factor ofj. Once an integrating factor is
obtained, we can construct infinitely many integrating fa
tors. We can therefore chooseg as a positive, monotonically
increasing function ofu such thatg(u) can be identified with
the local thermodynamic temperatureT in absolute tempera
ture scale@10#. Thus

Tdc5de2dw5de1pdn2S im idci . ~11!

With Eqs.~7! and ~11! we can obtain the following balanc
equation forc:

rdtc1¹W •~QW cT
21!5Jc , ~12!
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56 287LOCAL FORMULATION OF THE FIRST LAW AND THE . . .
where

Jc5T21~Sd2QW c•¹W ln T!

52T21$QW c•¹W ln T1~pJ1pbÎ !:¹W uW 1S iJW i•¹W m i%.

In view of the expressions ofQW cT
21 andJc given above,

we notice that these quantities are identical to the entr
currentJW s and entropy productions, respectively, in linear
irreversible thermodynamics. Furthermore, by Eqs.~11! and
~12!, c can be identified as the entropy densitys. Thus Eq.
~11! is the Gibbs relation, while Eq.~12! is the entropy bal-
ance equation. It should be emphasized that Eq.~11! is a
consequence of the~Frobenius! condition j`dj50, where
T21 is an integrating factor of the 1-formj5de2dw. Tra-
ditionally, Gibbs relation~11! is obtained via local equilib-
rium assumption. However, this assumption is not requi
in our approach.

B. Model equations of Jou, Casse-Vazquez, and Lebon in EIT

In the theory of EIT proposed by Jou, Casse-Vazqu
and Lebon,pb , QW , and pJ are considered as independe
variables in addition toe, n, and ci . By examining Eqs.
~6a!–~6c!, we multiply Eq. ~1! by p, Eq. ~6a! by
(2z21rt0)pb , Eq. ~6b! by (2lg)21rt1QW , Eq. ~6c! by
(22h)21rt2pJ , and add these results together to Eq.~4!.
We then obtain

r$dte1pdtn2@t0z
21pbdtpb1t1~lg!21QW •dtQW

1t2~2h!21pJ :dtpJ #%52¹W QW c1Sd , ~13!

with

QW c5QW 1~b8pbQW 1bQW •pJ !g, ~14!

Sd5QW c•¹W ln g1$z21
•pb

21~lg!21QW •QW 1~2h!21pJ :pJ %.
~15!

In view of Eq. ~13! we define the generalized work 1-form
dw by

dw52pdn1Xbdpb1XW h•dQW 1XW t :dpJ , ~16!

where

Xb52t0~rz!21pb , XW h52t1~rlg!21QW ,

Xt52t2~r2h!21pJ
y

d

z,
t

are the generalized potentials conjugate topb , QW , andpJ ,
respectively. Thus, except for the first term on the right ha
side of Eqs.~14! and ~16!, the remaining terms are the con
tributions to the work 1-form and the net heat flux, respe
tively, due to the additional independent variablespb , QW ,
andpJ . Again setrdq/dt52¹W •QW c andj5de2dw. By Eq.
~13!, the local formulation of the first law can be written a

de5dq1dw1dqd , dqd5r21Sddt,

while the local formulation of the second law can be writt
as

j`dj50,

Sd>0, Sd50 only at thermodynamic equilibrium.

Hence by the integrability condition~10a! there exist a local
thermodynamic temperatureg(u)5T in absolute tempera
ture scale and a scalar-valued functionc, such that

Tdc5de1pdn2$t0z
21pbdpb1t1~lT!21QW •dQW

1t2~2h!21pJ :dpJ % ~17!

is the generalized Gibbs relation. Furthermore, Eq.~13!
yields

rdtc1¹W •~QW cT
21!5T21~Sd2QW c•¹W ln T!5Jc ,

~18!

with

Jc5~zT!21pb
21~lT2!21QW •QW 1~2hT!21pJ :pJ . ~19!

Notice thatQW cT
215JW s is the entropy current,Jc5s is the

entropy production, andc5s is the entropy density that sa
isfy the entropy balance equation~18!.

C. General case

From the discussions above we notice that a general
entropy balance equation can be obtained if the internal
ergy balance equation~4! is modified such that contribution
due to the dissipative fluxesf̂ i

a are taken into account. To
this end, we multiply Eq.~1! by p, Eq. ~2! by 2m i and sum
over i , Eq. ~5! by Xi

a and sum overi anda, respectively.
Adding these results to Eq.~4! yields the following equation
equivalent to Eq.~4!:
r$dte1pdtn2S im idtci1S i ,aXi
a :dtf̂ i

a%52¹W •QW 2~pJ1pbÎ !:¹W uW 1S im i¹W •JW i1S i ,aXi
a :@Zi

a1L i
a#

52¹W •QW c2$~pJ1pbI !:¹W uW 1S iJW i•¹W m i2S i ,aC i
a :~¹W •Xi

a!%1S i ,aXi
a :~Zi

a1¹W •C i
a1L i

a!. ~20!
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288 56M. CHEN
whereC i
a is the flux off̂ i

a @11#, Xi
a ~the conjugate variable

of f̂ i
a! is the generalized potential, andQW c is the net heat flux

given by

QW c5QW 2S im iJW i1S i ,aXi
a :C i

a . ~21!

Denote

Sd52$~pJ1pbÎ !:¹W uW 1S iJW i•¹W m i2S i ,aC i
a :~¹W •Xi

a!%

1S i ,aXi
a :~Zi

a1¹W •C i
a1L i

a!. ~22!

Similar to¹W uW and¹W m i , ¹W •Xi
a can also be considered as

generalized thermodynamic force attributable to the tenso
flowsC i

a . Thus the first term of Eq.~22! represents a dissi
pative internal work. We callSd the dissipative energy
which cannot be converted to other useful work.

Next we define the generalized work 1-formdw for a
nonequilibrium local system by

dw52pdn1S im idci2S i ,aXi
a :df̂ i

a .

Since mass flows and other tensorial flows can also con
ute to the heat flux, we define the local rate of change of h
per unit massdq/dt by

r
dq

dt
52¹W •QW c .

Hence Eq.~20! can be rewritten as

de5dq1dw1dqd , dqd5r21Sddt, ~23!

wheredxi5(¹W xi)•drW1(] tx
i)dt is the substantial differen

tial.
Equation~23! is the local formulation of the first law. On

the other hand, if we setj5de2dw, then the local formu-
lation of the second law can be expressed as

j`dj50, ~24a!

Sd>0, Sd50 only at thermodynamic equilibrium.
~24b!

Therefore there exist a local thermodynamic temperaturT
in absolute temperature scale and a state functionc which is
additive under composition of subsystems@10#, such that

j5Tdc5de1pdn2S im idci1S i ,aXi
a :df̂ i

a ~25!

is the generalized Gibbs formula. Further, Eq.~20! yields the
equation

rdtc1¹W •~QW cT
21!5Jc , ~258!

whereJc5T21@Sd2QW c•¹W ln T#.
Therefore by consideringf̂ i

a as the additional indepen
dent variables and by generalizing Eq.~14! appropriately to
take into consideration the contributions due tof̂ i

a , we can
obtain a generalized entropy balance equation~258!. In Eq.
~258!, Jc>0 is the generalized entropy production. It co
al

b-
at

tains the dissipative energySd and the dissipative interna
work due to the net heat flux with thermodynamic for
2¹W ln T.

Based on the notion of uncompensated heat introduce
Clausius, Eu has recently obtained Eq.~258! from Carnot
theorem and Clausius inequality@6#. He calledJc the calot-
ropy production,QW cT

21 the calotropy current, andc the
calotropy density. So far the results in Eqs.~25! and~258! do
not depend on the specific expressions ofZi

a andL i
a . Thus

Eqs.~25! and~258! are general equations in irreversible the
modynamics that are not restricted to the framework of
Boltzmann equation, although kinetic theory can be help
in the construction ofZi

a andL i
a . As a matter of fact,Zi

a

andL i
a can be obtained from phenomenological theory su

as the model equations~6a!–~6c! considered by Jou, Casse
Vazquez, and Lebon.

In the school of EIT by Jou, Casse-Vazquez, and Leb
and by Müller and Ruggeri, respectively, entropy densitys is
a state function which satisfies the entropy balance equa
while in the school of EIT by Eu, calotropy densityc is a
state function which satisfies the calotropy balance equa
~258!. We devote the remaining section to investigating t
relationship between these two approaches in terms of E
~5! and ~6a!–~6c!.

In view of Eqs.~6a!–~6c! and~22!, Jc can be rewritten as

Jc52T21~¹W •uW !@pb1rzt0
21Xb#

2T21@¹W uW #~2!:@pJ12rht2
21Xt#

2T21¹W T•@T21QW 1rlt1
21Xh#

1¹W •$T21@XbCb1Xh :Ch1Xt :C t#%

1r$b8@zt0
21Xb¹W •QW 1lTt1

21Xh•¹W pb#

1b†lTt1
21Xh :¹W •pJ12ht1Xt :@¹W QW #~2!

‡%

2T21$rt0
21Xbpb1rt0

21Xh•QW 1rt2
21Xt :pJ %.

~26!

We must determineXb , Xh , Xt , Cb , Ch , andC t such that
Eq. ~26! becomes the entropy productions given by Eq.
~19!. Since¹W •uW , @¹W uW # (2), and¹W T are functionally indepen-
dent, we set the first three terms of Eq.~26! to zero. Then

Xb52t0~rz!21pb , Xh52t1~rlT!21QW ,

Xt52t2~r2h!21pJ , ~27a!

and the last term of Eq.~26! becomes

s5~zT!21pb
21~lT2!21QW •QW 1~2hT!21pJ :pJ ,

which is the same as Eq.~19!. Thus Eq.~26! reduces to

Jc5s1¹W •$T21~XbCb1XhCh1XtC t!

2~bpbQW 1bQW •pJ !%.

It is evident thatJc[s if and only if the divergence term
vanishes. Consequently,
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56 289LOCAL FORMULATION OF THE FIRST LAW AND THE . . .
Cb52t0
21rbzTQW , Ch52t1

21rblT2pJ , C t[0,
~27b!

and

QW cT
215T21~QW 1XbCb1XhCh1XtC t!

5T21QW 1b8pbQW 1bQW •pJ .

HenceQW cT
21[JW s , Jc[s, andc[s if Eq. ~27a! and~27b!

are satisfied.
Therefore, under the approximations of Eqs.~27a! and

~27b! in conjunction with the specific expressions ofZi
a and

L i
a as given in Eqs.~6a!–~6c!, Jc , QW cT

21, andc reduce to

the entropy productions, entropy currentJW s , and entropy
densitys, respectively. For this reason, it appears more
propriate to callc the generalized entropy density,QW cT

21

the generalized entropy current,Jc the generalized entrop
production, and Eq.~258! the generalized entropy balanc
equation. Finally it should be emphasized that the parame
T, p, m i , andXi

a are constitutive parameters that are det
mined by phenomenological considerations.

III. GLOBAL FORMULATION
OF THE FIRST LAW

AND THE SECOND LAW

So far the first law and the second law of thermodynam
for a nonequilibrium system have been formulated in ter
of the local thermodynamic variablesx that satisfy the dy-
namical equations~1!–~5!. Thus the state of the local sub
system centered atrW with volume elementdrW is described by
x with volume elementdx in the thermodynamic space
When the global system undergoes an irreversible proc
the local system correspondingly also undergoes a sim
irreversible process at a microscopic scale which is map
to a path in the thermodynamic space. However, it is diffic
to describe precisely what this microscopic irreversible p
cess is. For this reason we next consider the global form
tion of the first law and the second law. It should be
marked that the global formulation is quite different from t
local formulation. If the boundary of the material system
impermeable to the flows ofC i

a , then the thermodynamic
variables of the global system would be reduced toE, V, and
$Ci%, whereE, V, $Ci% can be obtained by integratinge, n,
$ci% over the volume of the material system. Let

dE

dt
5E rdte,

dQ

dt
52E ¹W •QW c ,

dQd

dt
5E Sd ,

and

dW

dt
5E 2r$pdtn2S im idtci1S i ,aXi

adtf̂ i
a%.

By Eq. ~20! we obtain the first law of thermodynamics
global form as

dE5dQ1dW1dQd . ~28!
-

rs
-

s
s

ss,
ar
d
lt
-
a-
-

Let V̂(t)5dE2dW. Notice thatV̂5dQ when the system is
at thermal equilibrium. The global form of the second la
can be expressed as

V̂`dV̂50, ~29a!

Qd>0, Qd50 only at thermodynamic equilibrium.
~29b!

Equation ~29a! is the inaccessibility condition of Cara
theodory@12#. The Caratheodory principle states that fro
an arbitrary initial point~state! there is a finite region~set of
states of finite measure in the thermodynamic space! that
cannot be reached by an adiabatic process, reversible o
reversible. This region may be taken arbitrarily close to
initial state.

As a consequence of Eq.~29a! there exist a global ther
modynamic temperatureT̂(t) and a global calotropy function
C(t) such that

V̂5dE2dW5T̂dC.

Therefore the generalized Gibbs formula in global form c
be written as@13#

T̂dC5dE1 p̂dV2S im̂ idCi1S i ,aX̂i
a :dF i

a . ~30!

In Eq. ~30!, p̂, m̂ i , X̂i
a are the global intensive thermody

namic variables. For example,p̂ is defined as follows:

p̂
dV

dt
5E ~prdtn!drW.

The other intensive global thermodynamic variables are
fined in a similar manner. Thus

T̂
dC

dt
5E T~rdtc!drW,

and Eq.~30! can be obtained from Eq.~25! by integrating
over the volume of the material system.

We now prove that Eq.~29! is equivalent to Kelvin’s
principle and Clausius’s principle. These principles a
stated as follows.

~i! Kelvin’s principle: In a cycle of processes, it is im
possible to transfer heat from a heat reservoir a
convert it all into work, without at the same tim
transferring a certain amount of heat from a hotter
a colder body.

~ii ! Clausius’s principle: It is impossible that at the end
a cycle of processes, heat has been transferred fro
colder to a hotter body without at the same time co
verting a certain amount of work into heat.

The proof given below is patterned after the proof
Kirkwood and Oppenheim for equilibrium thermodynami
@8#. ~1! Let T̂i5const, i51,2 be two hypersurfaces of con
stant temperatures,T̂1.T̂2 , in the thermodynamic spac
with coordinatesz5(z1 ,z2 ,...,zn) given by the global ther-
modynamic variablesE, V, Ci ,... . Let g i be a reversible
isotherm on theT̂i5const surface. We assume that heat a
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290 56M. CHEN
sorbed or liberated by the system along any reversible
therm outside the phase transition region is a continu
function ofz. Consider an arbitrary initial statez1 ong1 . Let
statesz18 andz19 be further to the left ofz1 such that the hea
absorbed by the system fromz19 to z18 and fromz18 to z1 along
g1 , respectively, is positive~V is increasing fromz19 to z18
and fromz18 to z1!. Through statesz18 andz19 we draw revers-
ible adiabatic paths (DQ50) that intersect isothermg2 at
z28 andz29 , respectively. Notice that bothF̂i

a andSd vanish
along a reversible path. We now prove that no points alo
the adiabatic pathsz182z28 and z192z29 are accessible from
statez1 by an adiabatic path, withV̂50, reversible or irre-
versible.

Suppose an adiabatic path exists betweenz1 andz28 where
V̂50. Consider the cyclez12z282z182z1 . The net heat ab-
sorbed by the system in this cycle isDQ18152DQ118.0,
where we have used the abbreviationDQ181 to denote the
heat absorbed from statez18 to statez1 . On the other hand, by
Eq. ~28! we haveDE5DQ1811DW50 in the cycle. Hence
2DW5DQ181 . This is impossible since the net heat a
sorbed would be converted completely into work done by
system (DW,0). Similarly no adiabatic path exists betwee
z1 and z29 . By the same reasoning no reversible adiaba
paths can cross each other. Hencez28Þz29 . This implies that
no points betweenz28 andz29 alongg2 can be reached from
z1 by adiabatic path withV̂50, reversible or irreversible
Next, let g be an isotherm on theT̂5const surface,T̂1.T̂
.T̂2 , such that it intersects the reversible adiabatic pa
z182z28 and z192z29 at zc and zd , respectively. By the sam
reasoning no points alongzc2zd can be reached fromz1 by
adiabatic paths~reversible or irreversible!. As T̂ is arbitrary,
a region of finite volume between the two surfacesT̂1 and
T̂2 can be generated which is inaccessible from statez1 by
adiabatic paths withV̂50. This region can be taken arb
trarily close toz1 . This proves the equivalence of Eq.~29!
and Kelvin’s principle for a nonequilibrium system.

~2! Let T̂i5const,i51,2,3, be hypersurfaces of consta
temperatures in the thermodynamic space withT̂1.T̂2
.T̂3 . Let g i , i51,2,3 be reversible isotherms on theT̂i
5const hypersurface. Consider an initial statez1 on g1 . Let
z18 andz19 be located further to the right ofz1 such that the
heatDQ118 absorbed by the system alongg1 from z1 to z18 is
positive. SimilarlyDQ1819 is also positive. Throughz18 and
z19 we draw reversible adiabatic paths that intersectg2 at z28
andz29 , respectively, and intersectg3 at z38 andz39 , respec-
tively. Locate pointsz3 and z̄3 on g3 such thatDQ338
5DQ118 andDQ 3̄395DQ119 . We now prove the assertio
that no adiabatic path, reversible or irreversible, conne
statesz1 andz3 . Furthermore,z3Þ z̄3 .

Suppose there exists an adiabatic path (V̂50) connecting
z1 andz3 . Consider the cyclez12z32z382z182z1 . The net
heat absorbed by the cycle isDQ5DQ3381DQ1815DQ338
2DQ11850. On the other hand, by Eq.~28! we have
DW50. But this is impossible forDW50 implies that the
net result of the cycle is to transfer heatDQ338 at T̂3 to heat
DQ118 at T̂1.T̂3 without converting a certain amount o
work into heat at the same time. This is against Clausiu
o-
s

g
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e

c

s

t

ts

’s

principle. Hence no adiabatic path, reversible or irreversib
connectsz1 andz3 . By the same reasoning we can show th
DQ1819ÞDQ3839 . Since DQ 3̄392DQ3395DQ1192DQ339
5DQ18192DQ3839Þ0, z3Þ z̄3 . Therefore any point along
g3 betweenz3 andz̄3 is inaccessible fromz1 by an adiabatic
path with V̂50. Next we locatez2 and z̄2 on g2 such that
DQ2285DQ118 and DQ 2̄295DQ119 . Similarly any point
alongg2 betweenz2 and z̄2 is inaccessible fromz1 by adia-
batic paths. In fact, letT̂5const be an arbitrary temperatu
hypersurface betweenT̂15const andT̂35const. Letg be an
isotherm on theT̂5const hypersurface which intersects t
reversible adiabatic path betweenz18 andz38 at zc , and inter-
sects the reversible adiabatic path betweenz19 andz39 at zd .
Locateza and zb on g by the conditionDQac5DQ118 and
DQbd5DQ119 . Then any point alongg betweenza andzb is
adiabatically inaccessible fromz1 . Indeed a region generate
in this manner cannot be connected fromz1 by adiabatic
paths withV̂50, reversible or irreversible. Again we hav
proven the equivalence of Eq.~29! and Clausius’s principle.

In conclusion, we have considered the dissipative flu
f̂ i

a as independent variables in addition to the conser
variablese, n, andci . We then reformulate the local form
of the first law and the second law accordingly by taking in
consideration the contributions of the dissipative fluxes. A
consequence of this approach, a generalized entropy bal
equation as well as a generalized Gibbs relation can be
tained. The method discussed in this paper is very differ
from the traditional approach in LIT, where the Gibbs re
tion is assumed in order to obtain the entropy balance eq
tion. Finally we show that the global formulation of the se
ond law given by Eq.~29! in conjunction with the first law
~28! is equivalent to Kelvin’s principle and Clausius’s prin
ciple. We have also investigated the conditions such that
generalized entropy balance equation~258! reduces to the
entropy balance equation~18! by examining the dynamica
equations~6a!–~6c! for the dissipative fluxes proposed b
Jou, Casse-Vazquez, and Lebon in EIT.

APPENDIX

In this appendix we consider the integrability conditio
~10a! of the 1-form j. For simplicity we denote x̂
5(x2,...,xn)5(n,c1 ,...,cr) and (p,2m1 ,...,2m r)
5(w2 ,...,wn). Assume thatp, m i are C1 functions of
( x̂,u). We then rewritej in terms ofwj ’s as

j5dx11pdn2(
i

m idci5dx11(
j>2

wj~ x̂,u!dxj .

~A1!

It can easily be proved thatj`dj50 if and only if dj50
for j50 @14#. This in turn implies

] jwk5]kwj for all uP@a,b# and j ,k>2. ~A2!

Here] j5]/]xj . Notice that Eq.~A2! is similar to Maxwell’s
relations at constant temperature. By Eq.~A2! there exists a
C1 functionV( x̂,u) such thatwj ( x̂,u)52] jV( x̂,u). Thus
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dV52(
j>2

wj~ x̂,u!dxj2u~ x̂,u!du,

whereu( x̂,u)52]uV( x̂,u). Consequently,

j5d~x12V!2udu.

By Eq. ~10a!; j`dj52d(x12V)`du`du50 implies

x12V5h†u~ x̂,u!,u‡

for someh, and thus

j5dh~u,u!2udu. ~A3!

Now we prove the existence of a local thermodynamic te
peratureT such thatT21 is an integrating factor forj. The
local temperature can be measured by inserting a therm
namic probe into a portion of the system in a manner
scribed by Muschik as the contact temperature@15#. LetU be
a neighborhood of an arbitrary local point (rW,t) of the sys-
tem. LetuP@a,b# be the empirical temperature inU. Con-
sider two subsystems in contact with each other. Each s
system is described by (x̂i ,u i), i51,2 and satisfies Eq.~A3!,
respectively. Within a short period of time, both subsyste
and the combined system have the same temperatureu. The
combined system is then described by (x̂1 ,x̂2 ,u) and also
satisfies Eq.~A3!. Suppose there is no interaction betwe
the two subsystems. Thenj5j11j2 . Hence,

dh~u,u!2udu5d@h~u1 ,u!1h~u2 ,u!#2~u11u2!du.

This equation can be solved by setting

u5u11u2 and h~u11u2 ,u!5h~u1 ,u!1h~u2 ,u!.

Consequently

h~u,u!5z~u!u,

where z is an arbitrary function ofu on @a,b#. We can
choosez such thatz(u).0. Thus

j5d~zu!2udu. ~A4!

The Pfaffian equationj50 has an integral curve given by

u5cz21 expS E z21du D5ct~u!,
-

.
s

s

-

y-
-

b-

s

wherec is a constant. In order to find the integral surfaces
Eq. ~A4! we considerc as a new independent variable an
denote it byc. Thenu5ct and

j5d~zu2udu!5d~ztc!2ctdu5cd~zt!1ztdc2ctdu.

But d(zt)5tdu. Thus

j5~zt!dc5S exp E z21du Ddc5g~u!dc.

Since we have chosenz(u).0 for all uP@a,b#, we now
identify

T5g~u!5expS E z21du D
as the local thermodynamic temperature. AsdT/du5Tz21

.0, g can be inverted to yieldu as a function ofT. Next we
consider the significance ofV. Since x12V( x̂,u)
5h„u( x̂,u),u… andh„u( x̂,u),u…5z(u)u, we have

e5V1zu. ~A5!

This shows thate is a function ofx̂ andu. Denote

V~ x̂,u!5V„x̂,u~T!…5 V̄x̂,T),

e~ x̂,u!5 ē~ x̂,T!.

By definition, u52]uV( x̂,u)52]TV̄( x̂,T)dT/du
5ūTz21, whereū52]TV̄. Hence

Tū5zu ~A6!

and

ē5V̄1Tū. ~A7!

The differential of Eq.~A7! in conjunction with Gibbs rela-
tion ~12! yields ū5s, and

dV̄52pdn1(
i

m idci2sdT. ~A8!

By Eqs.~A7! and~A8! we can conclude thatV̄ is the Helm-
holtz potential.
s
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